Analysis & Interpretation from Primate City and concept of Primacy

Johnson (1977: 498) stressed the variability in rank-size distribution, which can range from a concave curve (indicator of primate model) to log-normal (Zipf’s law) to convex, and pointed out the importance of explaining the factors behind these deviations. An examination of the reasons determining a convex distribution can be found in Johnson 1980. He first examines the hypothesis that if Zipf’s law shows, from the economic point of view, an integrated urban system, then the convexity should be related to the effects of low system integration. This hypothesis is well-tested in the case of the United States from 1750 to 1850, where rank-size convexity and per capita trade volume show an inverse relationship (internal trade is used as indicator of relative system integration).

An explanation for rank-size convex distributions put forward by various analysts has indicated that this type of distribution occurs when the area under examination is located on the periphery of a dendritic settlement system. This is a term used in anthropology to describe ‘a primate settlement system which exhibits decreasing settlement functional size with decreasing distance from the primate center and weak horizontal articulation among settlements at lower levels of the settlements hierarchy. Dendritic systems are often found in countries which were former members of colonial empires’ (Johnson 1980: 241). If the study-area does not contain the core of the dendritic system we have a case of ‘partitioning’ resulting in a convex distribution.

Sources & References: An Introduction to Development and Regional Planning, Urbanization- UN Habitat, Rank-Size Analysis And The Cities Of Roman Spain And Britain: Some Preliminary Considerations – Annalisa Marzano